Walker: Integrating the generalized Dirichlet SDE
This example runs Walker to integrate the generalized Dirichlet SDE (see DiffEq/GeneralizedDirichlet.h) using constant coefficients. For more details on the generalized Dirichlet SDE, see https:/
Control file
This example runs the setup that was used in the paper Bakosi, Ristorcelli, A Stochastic Diffusion Process for Lochner's generalized Dirichlet distribution, J. Math. Phys., 2013.
title "Generalized Dirichlet for the JMP paper" walker term 140.0 # Max time dt 0.025 # Time step size npar 10000 # Number of particles ttyi 1000 # TTY output interval rngs mkl_mrg32k3a seed 0 end end gendir # Select generalized Dirichlet SDE depvar y init zero coeff const ncomp 2 # = K = N-1 b 0.1 1.5 end S 0.625 0.4 end kappa 0.0125 0.3 end c -0.0125 end rng mkl_mrg32k3a end statistics # Estimate statistics <Y1> <Y2> <y1y1> <y2y2> <y1y2> end end
Example run on a single CPU
Main/walker -v -c ../../tmp/gd.q
Results
This is case 2 in the paper referenced above. Left – time evolution of the means and the means of the invariant distribution, right – time evolution of the components of the covariance matrix and those of the invariant.
Gnuplot commands to reproduce the above plots:
plot "stat.txt" u 2:3 w l t "<Y1>", "stat.txt" u 2:4 w l t "<Y2>", 5.0/12.0 lt 1, 7.0/30.0 lt 2 plot "stat.txt" u 2:5 w l t "<y1y1>", "stat.txt" u 2:6 w l t "<y1y2>", "stat.txt" u 2:7 w l t "<y2y2>", 35.0/1872.0 lt 1, -35.0/4680 lt 2, 609.0/35100.0 lt 3