Walker: Integrating the diagonal Ornstein-Uhlenbeck SDE
This example runs Walker to integrate the diagonal Ornstein-Uhlenbeck SDE (see DiffEq/DiagOrnsteinUhlenbeck.h) using constant coefficients.
Control file
title "Example problem" walker term 10.0 # Max time dt 0.001 # Time step size npar 10000 # Number of particles ttyi 1000 # TTY output interval rngs mkl_mrg32k3a seed 0 end end diag_ou depvar o init raw coeff const ncomp 2 sigmasq 0.25 1.0 end theta 1.0 1.0 end mu 0.0 1.5 end rng mkl_mrg32k3a end statistics interval 2 <o1o1> <o2o2> <o1o2> end pdfs interval 500 filetype txt policy overwrite centering elem format scientific precision 4 f2( o1 o2 : 5.0e-2 5.0e-2 ) #; -2 2 -2 2 ) end end
Example run on 4 CPUs
./charmrun +p4 Main/walker -v -c ../../tmp/test.q -u 0.9
Estimated moments
Left – time evolution of the means and the means of the invariant distribution, right – time evolution of the variances and those of the invariant as well as the zero correlation between the two independent equations integrated.
Gnuplot commands to reproduce the above plots:
plot "stat.txt" u 2:3 w l t "<O1>", "stat.txt" u 2:4 w l t "<O2>", 0.0 lt 1, 1.5 lt 2 plot "stat.txt" u 2:5 w l t "<o1o1>", "stat.txt" u 2:6 w l t "<o1o2>", "stat.txt" u 2:7 w l t "<o2o2>", 0.25/2 lt 1, 0.0 lt 2, 0.5 lt 3
Estimated bivariate PDF
Example ASCII bivariate PDF output.
# vim: filetype=sh: # # Joint bivariate PDF: f2(o1,o2) # ----------------------------------------------- # Numeric precision: 4 # Bin sizes: 5.0000e-02, 5.0000e-02 # Number of bins estimated: 57 x 107 # Number of bins output: 57 x 107 # Sample space extents: [-1.2500e+00 : 1.5500e+00], [-2.4500e+00 : 2.8500e+00] # # Example step-by-step visualization with gnuplot # ----------------------------------------------- # gnuplot> set grid # gnuplot> unset key # gnuplot> set xlabel "o1" # gnuplot> set ylabel "o2" # gnuplot> set zlabel "f2(o1,o2)" # gnuplot> set dgrid3d 50,50,1 # gnuplot> set cntrparam levels 20 # gnuplot> set contour # gnuplot> splot "pdf_f2.txt" with lines # # Gnuplot one-liner for quick copy-paste # -------------------------------------- # set grid; unset key; set xlabel "o1"; set ylabel "o2"; set zlabel "f2(o1,o2)"; set dgrid3d 50,50,1; set cntrparam levels 20; set contour; splot "pdf_f2.txt" w l # # Data columns: o1, o2, f2(o1,o2) # ----------------------------------------------- 5.5000e-01 -1.6500e+00 4.0000e-02 1.0000e+00 -1.8000e+00 4.0000e-02 -9.5000e-01 1.7500e+00 4.0000e-02 -5.0000e-02 -2.4500e+00 4.0000e-02 8.0000e-01 2.3500e+00 4.0000e-02 -4.0000e-01 2.0500e+00 4.0000e-02 ...
Example visualization of the estimated bivariate PDF with contour lines at the final time step using the command in the above input file.