Walker: Integrating the beta SDE
This example runs Walker to integrate the beta SDE (see DiffEq/Beta.h) using constant coefficients. For more detail on the beta SDE, see https:/
Control file
title "Example problem" walker #nstep 1 # Max number of time steps term 50.0 # Max time dt 0.005 # Time step size npar 100000 # Number of particles ttyi 1000 # TTY output interval rngs mkl_r250 end end beta depvar x ncomp 5 init zero coeff const # alpha = Sb/kappa, beta = (1-S)b/kappa # S = 1/(1+\beta/alpha), delta = S/alpha = kappa/b kappa 2.0 0.76923 0.5 0.15873 0.5 end b 0.4 1.0 1.0 1.0 8.0 end S 0.5 0.53846 0.5 0.39683 0.5 end rng mkl_r250 end statistics <X1> <X2> <X3> <X4> <X5> <x1x1> <x1x2> <x1x3> <x1x4> <x1x5> <x2x2> <x2x3> <x2x4> <x2x5> <x3x3> <x3x4> <x3x5> <x4x4> <x4x5> <x5x5> end pdfs interval 1000 filetype txt policy overwrite centering elem format scientific precision 4 p1( X1 : 2.0e-2 ) p2( X2 : 2.0e-2 ) p3( X3 : 2.0e-2 ) p4( X4 : 2.0e-2 ) p5( X5 : 2.0e-2 ) end end
Example run on 4 CPUs
./charmrun +p4 Main/walker -v -c ../../tmp/beta.q
Results
The left figure shows the time evolution of the means estimated from the numerical simulation together with those of the invariant distributions. The right figure shows the time evolution of the variances and those of the invariant. Both plots indicate convergence to the correct statistically stationary state.
Gnuplot commands to reproduce the above plots:
plot "stat.txt" u 2:3 w l t "<X1>", "stat.txt" u 2:4 w l t "<X2>", "stat.txt" u 2:5 w l t "<X3>", "stat.txt" u 2:6 w l t "<X4>", "stat.txt" u 2:7 w l t "<X5>", 0.5 lt 1, 0.53846 lt 2, 0.39683 lt 4 plot "stat.txt" u 2:8 w l t "<x1x1>", "stat.txt" u 2:13 w l t "<x2x2>", "stat.txt" u 2:17 w l t "<x3x3>", "stat.txt" u 2:20 w l t "<x4x4>", "stat.txt" u 2:22 w l t "<x5x5>", 0.20833 lt 1, 0.10805 lt 2, 0.083333 lt 3, 0.032788 lt 4, 0.014706 lt 5
The left figure shows the 5 estimated PDFs at the final step of the simulation together with the corresponding invariants. The right figure shows the time evolution of the estimated covariances indicating no correlations at all times corresponding to the statistically independent equations integrated.
Gnuplot commands to reproduce the above plots:
plot [0:1] [0:4] "pdf_p1.txt", "pdf_p2.txt", "pdf_p3.txt", "pdf_p4.txt", "pdf_p5.txt", x**(0.1-1.0)*(1.0-x)**(0.1-1.0)/19.715 lt 1 t "a=0.1, b=0.1", x**(0.7-1.0)*(1.0-x)**(0.6-1.0)/2.1539 lt 2 t "a=0.7, b=0.6", x**(1.0-1.0)*(1.0-x)**(1.0-1.0)/1.0 lt 3 t "a=1.0, b=1.0", x**(2.5-1.0)*(1.0-x)**(3.8-1.0)/0.03092 lt 4 t "a=2.5, b=3.8", x**(8.0-1.0)*(1.0-x)**(8.0-1.0)/1.9425e-05 lt 5 t "a=8.0, b=8.0" plot [] [-0.003:0.003] "stat.txt" u 2:9 w l t "<x1x2>", "stat.txt" u 2:10 w l t "<x1x3>", "stat.txt" u 2:11 w l t "<x1x4>", "stat.txt" u 2:12 w l t "<x1x5>", "stat.txt" u 2:14 w l t "<x2x3>", "stat.txt" u 2:15 w l t "<x2x4>", "stat.txt" u 2:16 w l t "<x2x5>", "stat.txt" u 2:18 w l t "<x3x4>", "stat.txt" u 2:19 w l t "<x3x5>", "stat.txt" u 2:21 w l t "<x4x5>"