1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282 | // *****************************************************************************
/*!
\file src/Main/Walker.cpp
\copyright 2012-2015 J. Bakosi,
2016-2018 Los Alamos National Security, LLC.,
2019-2021 Triad National Security, LLC.
All rights reserved. See the LICENSE file for details.
\brief Random walker Charm++ main chare
\details Random walker Charm++ main chare. This file contains the definition
of the Charm++ main chare, equivalent to main() in Charm++-land.
*/
// *****************************************************************************
#include <map>
#include <iostream>
#include <utility>
#include <vector>
#include "NoWarning/format.hpp"
#include "NoWarning/charm.hpp"
#include "NoWarning/pup.hpp"
#include "Print.hpp"
#include "Timer.hpp"
#include "Types.hpp"
#include "Init.hpp"
#include "WalkerBuildConfig.hpp"
#include "Tags.hpp"
#include "ProcessException.hpp"
#include "RNG.hpp"
#include "RNGStack.hpp"
#include "DiffEq.hpp"
#include "DiffEqStack.hpp"
#include "Options/RNG.hpp"
#include "WalkerPrint.hpp"
#include "WalkerDriver.hpp"
#include "Walker/CmdLine/Parser.hpp"
#include "Walker/CmdLine/CmdLine.hpp"
#include "Walker/InputDeck/InputDeck.hpp"
#include "ChareStateCollector.hpp"
#include "NoWarning/walker.decl.h"
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wmissing-variable-declarations"
#endif
//! \brief Charm handle to the main proxy, facilitates call-back to finalize,
//! etc., must be in global scope, unique per executable
CProxy_Main mainProxy;
//! Chare state collector Charm++ chare group proxy
tk::CProxy_ChareStateCollector stateProxy;
//! If true, call and stack traces are to be output with exceptions
//! \note This is true by default so that the trace is always output between
//! program start and the Main ctor in which the user-input from command line
//! setting for this overrides this true setting.
bool g_trace = true;
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
//! Walker declarations and definitions
namespace walker {
//! Global-scope data. Initialized by the main chare and distibuted to all PEs
//! by the Charm++ runtime system. Though semantically not const, all these
//! global data should be considered read-only. See also
//! http://charm.cs.illinois.edu/manuals/html/charm++/manual.html. The data
//! below is global-scope because they must be available to all PEs which could
//! be on different machines.
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wmissing-variable-declarations"
#endif
//! Defaults of input deck, facilitates detection what is set by user
//! \details This object is in global scope, it contains the default of all
//! possible user input, and thus it is made available to all PEs for
//! convenience reasons. The runtime system distributes it to all PEs during
//! initialization. Once distributed, the object does not change.
ctr::InputDeck g_inputdeck_defaults;
//! Input deck filled by parser, containing all input data
//! \details This object is in global scope, it contains all of user input, and
//! thus it is made available to all PEs for convenience reasons. The runtime
//! system distributes it to all PEs during initialization. Once distributed,
//! the object does not change.
ctr::InputDeck g_inputdeck;
//! Random number generators selected by user
//! \details This map is in global scope, because it holds polymorphic
//! objects, and thus must be distributed to all PEs during initialization.
//! Once distributed by the runtime system, the objects do not change.
std::map< tk::ctr::RawRNGType, tk::RNG > g_rng;
//! Differential equations selected by user
//! \details This vector is in global scope, because it holds polymorphic
//! objects, and thus must be distributed to all PEs during initialization.
//! Once distributed by the runtime system, the objects do not change.
std::vector< DiffEq > g_diffeqs;
//! Distributor Charm++ proxy facilitating call-back to Distributor by the
//! individual integrators
CProxy_Distributor g_DistributorProxy;
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
//! Pack/Unpack selected RNGs. This Pack/Unpack method (re-)creates the full RNG
//! stack since it needs to (re-)bind function pointers on different processing
//! elements. Therefore we circumvent Charm's usual pack/unpack for this type,
//! and thus sizing does not make sense: sizing is a no-op. We could initialize
//! the stack in RNGTestDriver's constructor and let this function re-create the
//! stack only when unpacking, but that leads to repeating the same code twice:
//! once in RNGTestDriver's constructor, once here. Another option is to use
//! this pack/unpack routine to both initially create (when packing) and to
//! re-create (when unpacking) the stack, which eliminates the need for
//! pre-creating the object in RNGTestDriver's constructor and therefore
//! eliminates the repeated code. This explains the guard for sizing: the code
//! below is called for packing only (in serial) and packing and unpacking (in
//! parallel).
inline
void operator|( PUP::er& p, std::map< tk::ctr::RawRNGType, tk::RNG >& rng ) {
try {
if (!p.isSizing()) {
tk::RNGStack stack(
#ifdef HAS_MKL
g_inputdeck.get< tag::param, tag::rngmkl >(),
#endif
#ifdef HAS_RNGSSE2
g_inputdeck.get< tag::param, tag::rngsse >(),
#endif
g_inputdeck.get< tag::param, tag::rng123 >() );
rng = stack.selected( g_inputdeck.get< tag::selected, tag::rng >() );
}
} catch (...) { tk::processExceptionCharm(); }
}
//! Pack/Unpack selected differential equations. This Pack/Unpack method
//! (re-)creates the DiffEq factory since it needs to (re-)bind function
//! pointers on different processing elements. Therefore we circumvent Charm's
//! usual pack/unpack for this type, and thus sizing does not make sense: sizing
//! is a no-op. We could initialize the factory in WalkerDriver's constructor
//! and let this function re-create the stack only when unpacking, but that
//! leads to repeating the same code twice: once in WalkerDriver's constructor,
//! once here. Another option is to use this pack/unpack routine to both
//! initially create (when packing) and to re-create (when unpacking) the
//! factory, which eliminates the need for pre-creating the object in
//! WalkerDriver's constructor and therefore eliminates the repeated code. This
//! explains the guard for sizing: the code below is called for packing only (in
//! serial) and packing and unpacking (in parallel).
inline
void operator|( PUP::er& p, std::vector< DiffEq >& eqs ) {
try {
if (!p.isSizing()) eqs = DiffEqStack().selected();
} catch (...) { tk::processExceptionCharm(); }
}
} // walker::
//! \brief Charm++ main chare for the random walker executable, walker.
//! \details Note that this object should not be in a namespace.
// cppcheck-suppress noConstructor
class Main : public CBase_Main {<--- Unmatched suppression: noConstructor
public:
//! \brief Constructor
//! \details Walker's main chare constructor is the entry point of the
//! program, called by the Charm++ runtime system. The constructor does
//! basic initialization steps, e.g., parser the command-line, prints out
//! some useful information to screen (in verbose mode), and instantiates
//! a driver. Since Charm++ is fully asynchronous, the constructor
//! usually spawns asynchronous objects and immediately exits. Thus in the
//! body of the main chare constructor we fire up an 'execute' chare,
//! which then calls back to Main::execute(). Finishing the main chare
//! constructor the Charm++ runtime system then starts the
//! network-migration of all global-scope data (if any). The execute chare
//! calling back to Main::execute() signals the end of the migration of
//! the global-scope data. Then we are ready to execute the driver. Since
//! the random walker is parallel and asynchronous, its driver fires up
//! additional Charm++ chare objects which then call back to
//! Main::finalize() at some point in the future when all work has been
//! finished. finalize() then exits by calling Charm++'s CkExit(),
//! shutting down the runtime system.
//! \see http://charm.cs.illinois.edu/manuals/html/charm++/manual.html
Main( CkArgMsg* msg )<--- Class 'Main' has a constructor with 1 argument that is not explicit. [+]Class 'Main' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
try :
m_signal( tk::setSignalHandlers() ),
m_cmdline(),
// Parse command line into m_cmdline using default simple pretty printer
m_cmdParser( msg->argc, msg->argv, tk::Print(), m_cmdline ),
// Create Walker driver
m_driver( tk::Main< walker::WalkerDriver >
( msg->argc, msg->argv,
m_cmdline,
tk::HeaderType::WALKER,
tk::walker_executable(),
walker::g_inputdeck_defaults.get< tag::cmd, tag::io,
tag::screen >(),
walker::g_inputdeck_defaults.get< tag::cmd, tag::io,
tag::nrestart >() ) ),
m_timer(1), // start new timer measuring the total runtime
m_timestamp()
{
delete msg;
g_trace = m_cmdline.get< tag::trace >();
tk::MainCtor( mainProxy, thisProxy, m_timer, m_cmdline,
CkCallback( CkIndex_Main::quiescence(), thisProxy ) );
// If quiescence detection is on or user requested it, create chare state
// collector Charm++ chare group
if ( m_cmdline.get< tag::chare >() || m_cmdline.get< tag::quiescence >() )
stateProxy = tk::CProxy_ChareStateCollector::ckNew();
// Fire up an asynchronous execute object, which when created at some
// future point in time will call back to this->execute(). This is
// necessary so that this->execute() can access already migrated
// global-scope data.
CProxy_execute::ckNew();
} catch (...) { tk::processExceptionCharm(); }
//! Execute driver created and initialized by constructor
void execute() {
try {
m_timestamp.emplace_back("Migrate global-scope data", m_timer[1].hms());
m_driver.execute(); // fires up async chares
} catch (...) { tk::processExceptionCharm(); }
}
//! Towards normal exit but collect chare state first (if any)
void finalize() {
tk::finalize( m_cmdline, m_timer, stateProxy, m_timestamp,
walker::g_inputdeck_defaults.get< tag::cmd, tag::io, tag::screen >(),
walker::g_inputdeck.get< tag::cmd, tag::io, tag::nrestart >(),
CkCallback( CkIndex_Main::dumpstate(nullptr), thisProxy ) );
}
//! Entry method triggered when quiescence is detected
void quiescence() {
try {
stateProxy.collect( /* error= */ true,
CkCallback( CkIndex_Main::dumpstate(nullptr), thisProxy ) );
} catch (...) { tk::processExceptionCharm(); }
}
//! Dump chare state
void dumpstate( CkReductionMsg* msg ) {
tk::dumpstate( m_cmdline,
walker::g_inputdeck_defaults.get< tag::cmd, tag::io, tag::screen >(),
walker::g_inputdeck.get< tag::cmd, tag::io, tag::nrestart >(),
msg );
}
//! Add time stamp contributing to final timers output
void timestamp( std::string label, tk::real stamp ) {
try{
m_timestamp.emplace_back( label, tk::hms( stamp ) );
} catch (...) { tk::processExceptionCharm(); }
}
private:
int m_signal; //!< Used to set signal handlers
walker::ctr::CmdLine m_cmdline; //!< Command line
walker::CmdLineParser m_cmdParser; //!< Command line parser
walker::WalkerDriver m_driver; //!< Driver
std::vector< tk::Timer > m_timer; //!< Timers
//! Time stamps in h:m:s with labels
std::vector< std::pair< std::string, tk::Timer::Watch > > m_timestamp;
};
//! \brief Charm++ chare execute
//! \details By the time this object is constructed, the Charm++ runtime system
//! has finished migrating all global-scoped read-only objects which happens
//! after the main chare constructor has finished.
class execute : public CBase_execute {
public: execute() { mainProxy.execute(); }
};
#include "NoWarning/walker.def.h"
|