Walker test code coverage report
Current view: top level - RNG - MKLRNG.hpp (source / functions) Hit Total Coverage
Commit: test_coverage.info Lines: 83 85 97.6 %
Date: 2022-09-21 13:52:12 Functions: 8 8 100.0 %
Legend: Lines: hit not hit | Branches: + taken - not taken # not executed Branches: 44 78 56.4 %

           Branch data     Line data    Source code
       1                 :            : // *****************************************************************************
       2                 :            : /*!
       3                 :            :   \file      src/RNG/MKLRNG.hpp
       4                 :            :   \copyright 2012-2015 J. Bakosi,
       5                 :            :              2016-2018 Los Alamos National Security, LLC.,
       6                 :            :              2019-2021 Triad National Security, LLC.
       7                 :            :              All rights reserved. See the LICENSE file for details.
       8                 :            :   \brief     Interface to Intel MKL VSL random number generators
       9                 :            :   \details   Interface to Intel MKL VSL random number generators.
      10                 :            : */
      11                 :            : // *****************************************************************************
      12                 :            : #ifndef MKLRNG_h
      13                 :            : #define MKLRNG_h
      14                 :            : 
      15                 :            : #include <memory>
      16                 :            : #include <mkl_vsl.h>
      17                 :            : 
      18                 :            : #include "Exception.hpp"
      19                 :            : #include "Keywords.hpp"
      20                 :            : 
      21                 :            : namespace tk {
      22                 :            : 
      23                 :            : //! MKL-based random number generator used polymorphically with tk::RNG
      24                 :            : class MKLRNG {
      25                 :            : 
      26                 :            :     using ncomp_t = kw::ncomp::info::expect::type;    
      27                 :            : 
      28                 :            :   public:
      29                 :            :     //! Constructor
      30                 :            :     //! \param[in] n Initialize RNG using this many independent streams
      31                 :            :     //! \param[in] brng Index of the basic generator to initialize the stream
      32                 :            :     //! \param[in] seed RNG seed
      33                 :            :     //! \param[in] uniform_method MKL ID of the method to use for uniform RNGs
      34                 :            :     //! \param[in] gaussian_method MKL ID of the method to use for Gaussian RNGs
      35                 :            :     //! \param[in] gaussianmv_method MKL ID of the method to use for
      36                 :            :     //!    multi-variate Gaussian RNGs
      37                 :            :     //! \param[in] beta_method MKL ID of the method to use for beta RNGs
      38                 :            :     //! \param[in] gamma_method MKL ID of the method to use for gamma RNGs
      39                 :        174 :     explicit MKLRNG(
      40                 :            :       int n = 1,
      41                 :            :       int brng = VSL_BRNG_MCG59,
      42                 :            :       unsigned int seed = 0,
      43                 :            :       int uniform_method = VSL_RNG_METHOD_UNIFORM_STD,
      44                 :            :       int gaussian_method = VSL_RNG_METHOD_GAUSSIAN_BOXMULLER,
      45                 :            :       int gaussianmv_method = VSL_RNG_METHOD_GAUSSIANMV_BOXMULLER2,
      46                 :            :       int beta_method = VSL_RNG_METHOD_BETA_CJA,
      47                 :        174 :       int gamma_method = VSL_RNG_METHOD_GAMMA_GNORM ) :
      48                 :            :       m_brng( brng ),
      49                 :            :       m_seed( seed ),
      50                 :            :       m_uniform_method( uniform_method ),
      51                 :            :       m_gaussian_method( gaussian_method ),
      52                 :            :       m_gaussianmv_method( gaussianmv_method ),
      53                 :            :       m_beta_method( beta_method ),
      54                 :            :       m_gamma_method( gamma_method ),
      55                 :            :       m_nthreads( n ),
      56         [ +  - ]:        174 :       m_stream()
      57                 :            :     {
      58                 :            :       Assert( n > 0, "Need at least one thread" );
      59                 :            :       Assert( brng > 0, "Basic RNG MKL parameter must be positive" );
      60                 :            :       // Allocate array of stream-pointers for threads
      61                 :        174 :       m_stream = std::make_unique< VSLStreamStatePtr[] >(
      62         [ +  - ]:        174 :                    static_cast<std::size_t>(n) );
      63                 :            :       // Initialize thread-streams for block-splitting. These MKL VSL functions
      64                 :            :       // dynamically allocate memory, so these calls being in a constructor are
      65                 :            :       // a potential memory leak hazard in the presence of exceptions. However,
      66                 :            :       // thankfully, the MKL functions below only emit warnings if they
      67                 :            :       // encounter errors and always continue. As a result, the constructor
      68                 :            :       // finishes, the MKLRNG object gets created, so the destructor will also
      69                 :            :       // get called when leaving scope.
      70         [ +  + ]:        174 :       if (n == 1)
      71 [ +  - ][ +  - ]:          7 :         errchk( vslNewStream( &m_stream[0], brng, seed ) );
      72                 :            :       else
      73         [ +  + ]:        815 :         for (int i=0; i<n; ++i) {
      74                 :        649 :           auto I = static_cast< std::size_t >( i );
      75 [ +  - ][ +  - ]:        649 :           errchk( vslNewStream( &m_stream[I], brng, seed ) );
      76 [ +  - ][ +  + ]:        649 :           errchk( vslLeapfrogStream( m_stream[I], i, n ) );
      77                 :            :         }
      78                 :        173 :     }
      79                 :            : 
      80                 :            :     //! Destructor
      81                 :        580 :     ~MKLRNG() noexcept { deleteStreams(); }
      82                 :            : 
      83                 :            :     //! Uniform RNG: Generate uniform random numbers
      84                 :            :     //! \param[in] tid Thread (or more precisely stream) ID
      85                 :            :     //! \param[in] num Number of RNGs to generate
      86                 :            :     //! \param[in,out] r Pointer to memory to write the random numbers to
      87                 :            :     void uniform( int tid, ncomp_t num, double* r ) const {
      88                 :  907326242 :       vdRngUniform( m_uniform_method,
      89         [ +  - ]:  907326242 :                     m_stream[ static_cast<std::size_t>(tid) ],
      90                 :            :                     static_cast< long long >( num ),
      91                 :            :                     r,
      92                 :            :                     0.0, 1.0 );
      93                 :          8 :     }
      94                 :            : 
      95                 :            :     //! Gaussian RNG: Generate Gaussian random numbers
      96                 :            :     //! \param[in] tid Thread (or more precisely stream) ID
      97                 :            :     //! \param[in] num Number of RNGs to generate
      98                 :            :     //! \param[in,out] r Pointer to memory to write the random numbers to
      99                 :            :     void gaussian( int tid, ncomp_t num, double* r ) const {
     100                 :  442000089 :       vdRngGaussian( m_gaussian_method,
     101         [ +  - ]:  442000089 :                      m_stream[ static_cast<std::size_t>(tid) ],
     102                 :            :                      static_cast< long long >( num ),
     103                 :            :                      r,
     104                 :            :                      0.0, 1.0 );
     105                 :         61 :     }
     106                 :            : 
     107                 :            :     //! \brief Multi-variate Gaussian RNG: Generate multi-variate Gaussian
     108                 :            :     //!    random numbers
     109                 :            :     //! \param[in] tid Thread (or more precisely stream) ID
     110                 :            :     //! \param[in] num Number of RNGs to generate
     111                 :            :     //! \param[in] d Dimension d ( d ≥ 1) of output random vectors
     112                 :            :     //! \param[in] mean Mean vector of dimension d
     113                 :            :     //! \param[in] cov Lower triangle of covariance matrix, stored as a vector
     114                 :            :     //!   of length d(d+1)/2
     115                 :            :     //! \param[in,out] r Pointer to memory to write the random numbers to
     116                 :            :     void gaussianmv( int tid, ncomp_t num, ncomp_t d, const double* const mean,
     117                 :            :                      const double* const cov, double* r ) const
     118                 :            :     {
     119                 :            :       Assert( d > 0,
     120                 :            :               "Dimension of multi-variate Gaussian RNGs must be positive" );
     121                 :         16 :       vdRngGaussianMV( m_gaussianmv_method,
     122 [ +  - ][ +  - ]:         16 :                        m_stream[ static_cast<std::size_t>(tid) ],
     123                 :            :                        static_cast< long long >( num ),
     124                 :            :                        r,
     125                 :            :                        static_cast< int >( d ),
     126                 :            :                        VSL_MATRIX_STORAGE_PACKED,
     127                 :            :                        mean,
     128                 :            :                        cov );
     129                 :         16 :     }
     130                 :            : 
     131                 :            :     //! Beta RNG: Generate beta random numbers
     132                 :            :     //! \param[in] tid Thread (or more precisely stream) ID
     133                 :            :     //! \param[in] num Number of RNGs to generate
     134                 :            :     //! \param[in] p First beta shape parameter
     135                 :            :     //! \param[in] q Second beta shape parameter
     136                 :            :     //! \param[in] a Beta displacement parameter
     137                 :            :     //! \param[in] b Beta scale factor
     138                 :            :     //! \param[in,out] r Pointer to memory to write the random numbers to
     139                 :            :     void beta( int tid, ncomp_t num, double p, double q, double a, double b,
     140                 :            :                double* r ) const
     141                 :            :     {
     142                 :         32 :       vdRngBeta( m_beta_method,
     143 [ +  - ][ +  - ]:         32 :                  m_stream[ static_cast<std::size_t>(tid) ],
     144                 :            :                  static_cast< long long >( num ),
     145                 :            :                  r,
     146                 :            :                  p, q, a, b );
     147                 :         24 :     }
     148                 :            : 
     149                 :            :     //! Gamma RNG: Generate gamma random numbers
     150                 :            :     //! \param[in] tid Thread (or more precisely stream) ID
     151                 :            :     //! \param[in] num Number of RNGs to generate
     152                 :            :     //! \param[in] a Gamma shape parameter
     153                 :            :     //! \param[in] b Gamma scale factor
     154                 :            :     //! \param[in,out] r Pointer to memory to write the random numbers to
     155                 :            :     void gamma( int tid, ncomp_t num, double a, double b, double* r ) const
     156                 :            :     {
     157                 :          0 :       vdRngGamma( m_beta_method,
     158                 :          0 :                   m_stream[ static_cast<std::size_t>(tid) ],
     159                 :            :                   static_cast< long long >( num ),
     160                 :            :                   r,
     161                 :            :                   a, 0.0, b );  // displacement = 0.0
     162                 :            :     }
     163                 :            : 
     164                 :            :     //! Copy assignment
     165                 :         19 :     MKLRNG& operator=( const MKLRNG& x ) {
     166                 :         19 :       m_brng = x.m_brng;
     167                 :         19 :       m_seed = x.m_seed;
     168                 :         19 :       m_uniform_method = x.m_uniform_method;
     169                 :         19 :       m_gaussian_method = x.m_gaussian_method;
     170                 :         19 :       m_gaussianmv_method = x.m_gaussianmv_method;
     171                 :         19 :       m_beta_method = x.m_beta_method;
     172                 :         19 :       m_gamma_method = x.m_gamma_method;
     173                 :         19 :       m_nthreads = x.m_nthreads;
     174                 :         19 :       m_stream = std::make_unique< VSLStreamStatePtr[] >(
     175                 :         19 :                    static_cast<std::size_t>(x.m_nthreads) );
     176         [ +  + ]:         19 :       if (m_nthreads == 1)
     177                 :          4 :         errchk( vslNewStream( &m_stream[0], x.m_brng, x.m_seed ) );
     178                 :            :       else
     179         [ +  + ]:         75 :         for (int i=0; i<x.m_nthreads; ++i) {
     180                 :         60 :           auto I = static_cast< std::size_t >( i );
     181                 :         60 :           errchk( vslNewStream( &m_stream[I], x.m_brng, x.m_seed ) );
     182                 :         60 :           errchk( vslLeapfrogStream( m_stream[I], i, x.m_nthreads ) );
     183                 :            :         }
     184                 :         19 :       return *this;
     185                 :            :     }
     186                 :            : 
     187                 :            :     //! Copy constructor: in terms of copy assignment
     188         [ +  - ]:         16 :     MKLRNG( const MKLRNG& x ) { operator=(x); }
     189                 :            : 
     190                 :            :     //! Move assignment
     191                 :        391 :     MKLRNG& operator=( MKLRNG&& x ) {
     192                 :        391 :       deleteStreams();
     193                 :        391 :       m_brng = x.m_brng;
     194                 :        391 :       m_seed = x.m_seed;
     195                 :        391 :       m_uniform_method = x.m_uniform_method;
     196                 :        391 :       m_gaussian_method = x.m_gaussian_method;
     197                 :        391 :       m_gaussianmv_method = x.m_gaussianmv_method;
     198                 :        391 :       m_beta_method = x.m_beta_method;
     199                 :        391 :       m_gamma_method = x.m_gamma_method;
     200                 :        391 :       m_nthreads = x.m_nthreads;
     201                 :        391 :       m_stream = std::make_unique< VSLStreamStatePtr[] >(
     202                 :        391 :                    static_cast<std::size_t>(x.m_nthreads) );
     203         [ +  + ]:       1896 :       for (int i=0; i<x.m_nthreads; ++i) {
     204                 :       1505 :         auto I = static_cast< std::size_t >( i );
     205                 :       1505 :         m_stream[I] = x.m_stream[I];
     206                 :       1505 :         x.m_stream[I] = nullptr;
     207                 :            :       }
     208                 :        391 :       x.m_brng = 0;
     209                 :        391 :       x.m_seed = 0;
     210                 :        391 :       x.m_uniform_method = 0;
     211                 :        391 :       x.m_gaussian_method = 0;
     212                 :        391 :       x.m_gaussianmv_method = 0;
     213                 :        391 :       x.m_beta_method = 0;
     214                 :        391 :       x.m_gamma_method = 0;
     215         [ +  - ]:        391 :       x.m_nthreads = 0;
     216                 :            :       x.m_stream.reset( nullptr );
     217                 :        391 :       return *this;
     218                 :            :     }
     219                 :            : 
     220                 :            :     //! Move constructor: in terms of move assignment
     221                 :        391 :     MKLRNG( MKLRNG&& x ) :
     222                 :            :       m_brng( 0 ),
     223                 :            :       m_seed( 0 ),
     224                 :            :       m_uniform_method( 0 ),
     225                 :            :       m_gaussian_method( 0 ),
     226                 :            :       m_gaussianmv_method( 0 ),
     227                 :            :       m_beta_method( 0 ),
     228                 :            :       m_gamma_method( 0 ),
     229                 :            :       m_nthreads( 0 ),
     230         [ +  - ]:        391 :       m_stream( nullptr )
     231         [ +  - ]:        391 :     { *this = std::move(x); }
     232                 :            : 
     233                 :            :     //! Accessor to the number of threads we operate on
     234                 :            :     std::size_t nthreads() const noexcept
     235                 :         39 :     { return static_cast< std::size_t >( m_nthreads); }
     236                 :            : 
     237                 :            :   private:
     238                 :            :     //! Delete all thread streams
     239                 :        971 :     void deleteStreams() {
     240         [ +  + ]:       1681 :       for (int i=0; i<m_nthreads; ++i) {
     241         [ +  - ]:        710 :         auto I = static_cast< std::size_t >( i );
     242         [ +  - ]:        710 :         if (m_stream[I]) {
     243                 :        710 :           vslDeleteStream( &m_stream[I] );
     244                 :        710 :           m_stream[I] = nullptr;
     245                 :            :         }
     246                 :            :       }
     247                 :        971 :     }
     248                 :            : 
     249                 :            :     //! MKL VSL error check
     250                 :            :     //! \param[in] err MKL VSL error code as returned from MKL VSL functions
     251                 :            :     //! \details This calls ErrChk(), i.e., it is not compiled away in Release
     252                 :            :     //!   mode as an error here can result due to user input incompatible with
     253                 :            :     //!   the MKL library.
     254                 :       1429 :     void errchk( int err ) {
     255 [ +  + ][ +  - ]:       1430 :       ErrChk( err == VSL_STATUS_OK, "MKL VSL Error Code: " +
         [ +  - ][ +  - ]
         [ +  - ][ +  - ]
         [ -  + ][ -  + ]
         [ -  + ][ -  + ]
         [ -  - ][ -  - ]
                 [ -  - ]
     256                 :            :               std::to_string(err) + ", see mkl_vsl_defines.h for more info" );
     257                 :       1428 :     }
     258                 :            : 
     259                 :            :     int m_brng;                                      //!< MKL RNG id
     260                 :            :     unsigned int m_seed;                             //!< Seed
     261                 :            :     int m_uniform_method;                            //!< Uniform method to use
     262                 :            :     int m_gaussian_method;                           //!< Gaussian method to use
     263                 :            :     int m_gaussianmv_method;           //!< Multi-variate Gaussian method to use
     264                 :            :     int m_beta_method;                               //!< Beta method to use
     265                 :            :     int m_gamma_method;                              //!< Gamma method to use
     266                 :            :     int m_nthreads;                                  //!< Number of threads
     267                 :            :     std::unique_ptr< VSLStreamStatePtr[] > m_stream; //!< Random number streams
     268                 :            : };
     269                 :            : 
     270                 :            : } // tk::
     271                 :            : 
     272                 :            : #endif // MKLRNG_h

Generated by: LCOV version 1.14