Walker test code coverage report
Current view: top level - DiffEq/WrightFisher - WrightFisher.hpp (source / functions) Hit Total Coverage
Commit: test_coverage.info Lines: 0 67 0.0 %
Date: 2022-09-21 18:57:21 Functions: 0 32 0.0 %
Legend: Lines: hit not hit | Branches: + taken - not taken # not executed Branches: 0 84 0.0 %

           Branch data     Line data    Source code
       1                 :            : // *****************************************************************************
       2                 :            : /*!
       3                 :            :   \file      src/DiffEq/WrightFisher/WrightFisher.hpp
       4                 :            :   \copyright 2012-2015 J. Bakosi,
       5                 :            :              2016-2018 Los Alamos National Security, LLC.,
       6                 :            :              2019-2021 Triad National Security, LLC.
       7                 :            :              All rights reserved. See the LICENSE file for details.
       8                 :            :   \brief     Wright-Fisher SDE
       9                 :            :   \details   This file implements the time integration of a system of stochastic
      10                 :            :     differential equations (SDEs), whose invariant is the Dirichlet
      11                 :            :     distribution. For more details on the Wright-Fisher SDE, see
      12                 :            :     http://www.sciencedirect.com/science/article/pii/S0040580912001013.
      13                 :            : */
      14                 :            : // *****************************************************************************
      15                 :            : #ifndef WrightFisher_h
      16                 :            : #define WrightFisher_h
      17                 :            : 
      18                 :            : #include <numeric>
      19                 :            : #include <vector>
      20                 :            : #include <iomanip>
      21                 :            : 
      22                 :            : #include "WalkerBuildConfig.hpp"
      23                 :            : 
      24                 :            : #ifdef HAS_MKL
      25                 :            :   #include <mkl_lapacke.h>
      26                 :            : #else
      27                 :            :   #include <lapacke.h>
      28                 :            : #endif
      29                 :            : 
      30                 :            : #include "Macro.hpp"
      31                 :            : #include "InitPolicy.hpp"
      32                 :            : #include "WrightFisherCoeffPolicy.hpp"
      33                 :            : #include "RNG.hpp"
      34                 :            : #include "Particles.hpp"
      35                 :            : 
      36                 :            : namespace walker {
      37                 :            : 
      38                 :            : extern ctr::InputDeck g_inputdeck;
      39                 :            : extern std::map< tk::ctr::RawRNGType, tk::RNG > g_rng;
      40                 :            : 
      41                 :            : //! \brief Wright-Fisher SDE used polymorphically with DiffEq
      42                 :            : //! \details The template arguments specify policies and are used to configure
      43                 :            : //!   the behavior of the class. The policies are:
      44                 :            : //!   - Init - initialization policy, see DiffEq/InitPolicy.h
      45                 :            : //!   - Coefficients - coefficients policy, see DiffEq/WrightFisherCoeffPolicy.h
      46                 :            : template< class Init, class Coefficients >
      47                 :            : class WrightFisher {
      48                 :            : 
      49                 :          0 :     void print_matrix( const char *name, const double *mat, lapack_int n,
      50                 :            :                        lapack_int m ) const
      51                 :            :     {
      52                 :            :       int i, j;
      53                 :          0 :       printf("%s:\n", name);
      54         [ -  - ]:          0 :       for(i=0; i<n; ++i) {
      55         [ -  - ]:          0 :           for(j=0; j<m; ++j)
      56                 :          0 :               printf("%10g ", mat[i*n+j]);
      57                 :          0 :           printf("\n");
      58                 :            :       }
      59                 :          0 :       printf("\n");
      60                 :          0 :     }
      61                 :            : 
      62                 :            :   private:
      63                 :            :     using ncomp_t = kw::ncomp::info::expect::type;
      64                 :            : 
      65                 :            :   public:
      66                 :            :     //! \brief Constructor
      67                 :            :     //! \param[in] c Index specifying which system of Wright-Fisher SDEs to
      68                 :            :     //!   construct. There can be multiple wright-fisher ... end blocks in a
      69                 :            :     //!   control file. This index specifies which Wright-Fisher SDE system to
      70                 :            :     //!   instantiate. The index corresponds to the order in which the
      71                 :            :     //!   wright-fisher ... end blocks are given the control file.
      72                 :          0 :     explicit WrightFisher( ncomp_t c ) :
      73                 :            :       m_c( c ),
      74                 :            :       m_depvar(
      75                 :          0 :         g_inputdeck.get< tag::param, tag::wrightfisher, tag::depvar >().at(c) ),
      76                 :            :       m_ncomp(
      77                 :          0 :         g_inputdeck.get< tag::component >().get< tag::wrightfisher >().at(c) ),
      78                 :            :       m_offset(
      79                 :          0 :         g_inputdeck.get< tag::component >().offset< tag::wrightfisher >(c) ),
      80         [ -  - ]:          0 :       m_rng( g_rng.at( tk::ctr::raw(
      81                 :          0 :         g_inputdeck.get< tag::param, tag::wrightfisher, tag::rng >().at(c) ) ) ),
      82                 :            :       m_omega(),
      83                 :            :       coeff(
      84                 :          0 :         m_ncomp,
      85         [ -  - ]:          0 :         g_inputdeck.get< tag::param, tag::wrightfisher, tag::omega >().at(c),
      86         [ -  - ]:          0 :         m_omega )
      87                 :            :     {
      88 [ -  - ][ -  - ]:          0 :       Throw( "Wright-Fisher diffusion matrix not yet implemented! See comments "
                 [ -  - ]
      89                 :            :              "in code for details." );
      90                 :            :     }
      91                 :            :     //! Initalize SDE, prepare for time integration
      92                 :            :     //! \param[in] stream Thread (or more precisely stream) ID 
      93                 :            :     //! \param[in,out] particles Array of particle properties 
      94                 :          0 :     void initialize( [[maybe_unused]] int stream, tk::Particles& particles ) {
      95                 :            :       //! Set initial conditions using initialization policy
      96                 :            :       //Init::template
      97                 :            :       //  init< tag::wrightfisher >
      98                 :            :       //      ( g_inputdeck, m_rng, stream, particles, m_c, m_ncomp, m_offset );
      99                 :            : 
     100                 :          0 :       const auto npar = particles.nunk();
     101         [ -  - ]:          0 :       for (auto p=decltype(npar){0}; p<npar; ++p) {
     102                 :            :         // Initialize the first m_ncomp (N-1) scalars
     103                 :            :         ncomp_t i;
     104         [ -  - ]:          0 :         for (i=0; i<m_ncomp-1; ++i) {
     105                 :          0 :           particles( p, i, m_offset ) =
     106                 :          0 :             (1.0 + static_cast<tk::real>(i)) / static_cast<tk::real>(m_ncomp);
     107                 :            :         }
     108                 :            :         // Initialize the (N-1)th scalar from unit-sum
     109                 :          0 :         tk::real& par = particles( p, i, m_offset );
     110                 :          0 :         par = 1.0 - particles( p, 0, m_offset );
     111         [ -  - ]:          0 :         for (i=1; i<m_ncomp-1; ++i) {
     112                 :          0 :           par -= particles( p, i, m_offset );
     113                 :            :         }
     114                 :            :       }
     115                 :          0 :     }
     116                 :            : 
     117                 :            :     //! \brief Advance particles according to the Wright-Fisher SDE
     118                 :            :     //! \param[in,out] particles Array of particle properties
     119                 :            :     //! \param[in] stream Thread (or more precisely stream) ID
     120                 :            :     //! \param[in] dt Time step size
     121                 :          0 :     void advance( tk::Particles& particles,
     122                 :            :                   int stream,
     123                 :            :                   tk::real dt,
     124                 :            :                   tk::real,
     125                 :            :                   const std::map< tk::ctr::Product, tk::real >& )
     126                 :            :     {
     127                 :            :       // Compute sum of coefficients
     128                 :          0 :       const auto omega = std::accumulate( begin(m_omega), end(m_omega), 0.0 );
     129                 :          0 :       const auto npar = particles.nunk();
     130                 :            : 
     131                 :            :       #if defined(__clang__)
     132                 :            :         #pragma clang diagnostic push
     133                 :            :         #pragma clang diagnostic ignored "-Wvla"
     134                 :            :         #pragma clang diagnostic ignored "-Wvla-extension"
     135                 :            :       #elif defined(STRICT_GNUC)
     136                 :            :         #pragma GCC diagnostic push
     137                 :            :         #pragma GCC diagnostic ignored "-Wvla"
     138                 :            :       #endif
     139                 :            : 
     140         [ -  - ]:          0 :       for (auto p=decltype(npar){0}; p<npar; ++p) {
     141                 :            :         // Need to build the square-root of the Wright-Fisher diffusion matrix:
     142                 :            :         // B_ij = y_i * ( delta_ij - y_j ). If the matrix is positive definite,
     143                 :            :         // the Cholesky decomposition would work, however, B_ij is only positive
     144                 :            :         // semi-definite, so Cholesky may fail and considering floating-point
     145                 :            :         // errors it will definitely fail at some point.
     146                 :            :         //
     147                 :            :         // A stable square-root for B_ij is not yet implemented. Here is some
     148                 :            :         // details and points for further development:
     149                 :            :         //
     150                 :            :         // An interesting fact from http://math.stackexchange.com/a/332465, on
     151                 :            :         // gauging the eigen values of a matrix:
     152                 :            :         //
     153                 :            :         // "Choosing each diagonal entry to be greater than the sum of the
     154                 :            :         // absolute values of the other entries in the same row will immediately
     155                 :            :         // imply that all of the eigenvalues of A are positive, and therefore
     156                 :            :         // that A is positive definite."
     157                 :            :         //
     158                 :            :         // The WF diffusion matrix seems to be positive semi-definite with at
     159                 :            :         // least one very small eigenvalue O(10e-18). The row and column sums
     160                 :            :         // are zero. It does not appear that the matrix has negative
     161                 :            :         // eigenvalues.
     162                 :            :         //
     163                 :            :         // Using Cholesky decomposition to compute the square-root may fail.
     164                 :            :         // Other methods, such as diagonalizing the matrix or the LDL
     165                 :            :         // decomposition, may work, but have not tried. The former requires
     166                 :            :         // finding the eigenvalues, with e.g., LAPACK's DSPEVD, thereby
     167                 :            :         // diagonalizing the matrix, and taking the square-root of the diagonal
     168                 :            :         // elements to find the square-root of the matrix. See
     169                 :            :         // http://en.wikipedia.org/wiki/Square_root_of_a_matrix.  This may be
     170                 :            :         // okay, but probably overkill, as we don't really need the eigenvalues,
     171                 :            :         // only the square-root of the matrix.
     172                 :            :         //
     173                 :            :         // The latter (LDL) is similar to Cholesky, but does not involve square
     174                 :            :         // root. See http://en.wikipedia.org/wiki/Cholesky_decomposition. See
     175                 :            :         // also Golub van Loan: Sec.4.1.2 LDL. It appears that LDL would compare
     176                 :            :         // in perfromance to Cholesky and would work even on large indefinite
     177                 :            :         // matrices. LAPACK probably has LDL.
     178                 :            :         //
     179                 :            :         // I'm putting this aside for now. The next step should probably be
     180                 :            :         // idintifying the LAPACK for LDL and use it to advance the WF system
     181                 :            :         // using LD^{1/2}.
     182                 :            :         //
     183                 :            :         // See also:
     184                 :            :         // http://en.wikipedia.org/wiki/Positive-definite_matrix
     185                 :            :         // file:///opt/intel/composerxe/Documentation/en_US/mkl/mklman/index.htm
     186                 :            :         // http://icl.cs.utk.edu/lapack-forum/archives/lapack/msg01497.html
     187                 :            :         // http://yarchive.net/comp/sqrtm.html
     188                 :            : 
     189                 :          0 :         tk::real B[m_ncomp][m_ncomp];
     190                 :          0 :         tk::real Bo[m_ncomp][m_ncomp];
     191         [ -  - ]:          0 :         for (ncomp_t i=0; i<m_ncomp; ++i) {
     192         [ -  - ]:          0 :           const tk::real& pari = particles( p, i, m_offset );
     193         [ -  - ]:          0 :           for (ncomp_t j=0; j<m_ncomp; ++j) {
     194         [ -  - ]:          0 :             const tk::real& parj = particles( p, j, m_offset );
     195         [ -  - ]:          0 :             if (i == j) {
     196                 :          0 :               B[i][i] = std::abs( pari * (1.0 - pari) );
     197         [ -  - ]:          0 :               if (B[i][i] < 1.0e-10) B[i][i] = 1.0;
     198                 :            :             } else {
     199                 :          0 :               B[i][j] = -pari*parj;
     200                 :            :             }
     201                 :            :           }
     202                 :            :         }
     203                 :          0 :         std::memcpy( Bo, B, m_ncomp*m_ncomp*sizeof(tk::real) );
     204                 :            :         // Compute diffusion matrix (lower triangle of Cholesky-decomposition)
     205                 :          0 :         lapack_int n = static_cast< lapack_int >( m_ncomp );
     206         [ -  - ]:          0 :         lapack_int info = LAPACKE_dpotrf( LAPACK_ROW_MAJOR, 'L', n, B[0], n );
     207         [ -  - ]:          0 :         if (info != 0 ) {
     208         [ -  - ]:          0 :           print_matrix( "=======\nOriginal Matrix", Bo[0], n, n );
     209 [ -  - ][ -  - ]:          0 :           std::cout << "info: " << info << std::endl;
                 [ -  - ]
     210         [ -  - ]:          0 :           print_matrix( "Result of Cholesky factorization", B[0], n, n );
     211         [ -  - ]:          0 :           for (ncomp_t i=0; i<m_ncomp; ++i) {
     212         [ -  - ]:          0 :             std::cout <<
     213                 :            :               std::setprecision( std::numeric_limits< tk::real >::digits10 )
     214 [ -  - ][ -  - ]:          0 :             << i << " par: " << particles( p, i, m_offset) << std::endl;
         [ -  - ][ -  - ]
                 [ -  - ]
     215                 :            :           }
     216                 :            :         }
     217                 :            :         //ErrChk( info == 0, "Wright-Fisher Cholesky decomposition unsuccessful, "
     218                 :            :         //                   "info = " + std::to_string( info ) + ", particle: " +
     219                 :            :         //                   std::to_string( p ) );
     220                 :            : 
     221                 :            :         // Advance the first m_ncomp (N-1) scalars
     222         [ -  - ]:          0 :         if (info == 0) {
     223                 :          0 :           ncomp_t i = 0;
     224         [ -  - ]:          0 :           for (i=0; i<m_ncomp-1; ++i) {
     225         [ -  - ]:          0 :             tk::real& par = particles( p, i, m_offset );
     226                 :            :             // Advance first m_ncomp (K=N-1) scalars due to drift
     227                 :          0 :             par += 0.5*(m_omega[i] - omega*par)*dt;
     228                 :            :             // Advance first m_ncomp (K=N-1) particles with Cholesky-decomposed
     229                 :            :             // lower triangle (diffusion matrix)
     230         [ -  - ]:          0 :             for (ncomp_t j=0; j<m_ncomp-1; ++j)
     231         [ -  - ]:          0 :               if (j<=i) {
     232                 :            :                 tk::real dW;
     233         [ -  - ]:          0 :                 m_rng.gaussian( stream, 1, &dW );
     234                 :          0 :                 par += B[i][j] * sqrt(dt) * dW;
     235                 :            :               }
     236                 :            :           }
     237                 :            :           // Compute the (N-1)th scalar from unit-sum
     238         [ -  - ]:          0 :           tk::real& par = particles( p, i, m_offset );
     239         [ -  - ]:          0 :           par = 1.0 - particles( p, 0, m_offset );
     240         [ -  - ]:          0 :           for (i=1; i<m_ncomp-1; ++i) {
     241         [ -  - ]:          0 :             par -= particles( p, i, m_offset );
     242                 :            :           }
     243                 :            :         }
     244                 :            :       }
     245                 :            : 
     246                 :            :       #if defined(__clang__)
     247                 :            :         #pragma clang diagnostic pop
     248                 :            :       #elif defined(STRICT_GNUC)
     249                 :            :         #pragma GCC diagnostic pop
     250                 :            :       #endif
     251                 :          0 :     }
     252                 :            : 
     253                 :            :   private:
     254                 :            :     const ncomp_t m_c;                  //!< Equation system index
     255                 :            :     const char m_depvar;                //!< Dependent variable
     256                 :            :     const ncomp_t m_ncomp;              //!< Number of components
     257                 :            :     const ncomp_t m_offset;             //!< Offset SDE operates from
     258                 :            :     const tk::RNG& m_rng;               //!< Random number generator
     259                 :            : 
     260                 :            :     //! Coefficients
     261                 :            :     std::vector< kw::sde_omega::info::expect::type > m_omega;
     262                 :            : 
     263                 :            :     //! Coefficients policy
     264                 :            :     Coefficients coeff;
     265                 :            : };
     266                 :            : 
     267                 :            : } // walker::
     268                 :            : 
     269                 :            : #endif // WrightFisher_h

Generated by: LCOV version 1.14