Walker test code coverage report
Current view: top level - DiffEq/Beta - MixNumberFractionBeta.hpp (source / functions) Hit Total Coverage
Commit: test_coverage.info Lines: 0 34 0.0 %
Date: 2022-09-21 18:57:21 Functions: 0 40 0.0 %
Legend: Lines: hit not hit | Branches: + taken - not taken # not executed Branches: 0 30 0.0 %

           Branch data     Line data    Source code
       1                 :            : // *****************************************************************************
       2                 :            : /*!
       3                 :            :   \file      src/DiffEq/Beta/MixNumberFractionBeta.hpp
       4                 :            :   \copyright 2012-2015 J. Bakosi,
       5                 :            :              2016-2018 Los Alamos National Security, LLC.,
       6                 :            :              2019-2021 Triad National Security, LLC.
       7                 :            :              All rights reserved. See the LICENSE file for details.
       8                 :            :   \brief     System of mix number-fraction beta SDEs
       9                 :            :   \details   This file implements the time integration of a system of stochastic
      10                 :            :     differential equations (SDEs) with linear drift and quadratic diagonal
      11                 :            :     diffusion, whose invariant is the joint [beta
      12                 :            :     distribution](http://en.wikipedia.org/wiki/Beta_distribution). There are two
      13                 :            :     differences compared to the plain beta SDE (see DiffEq/Beta.h):
      14                 :            : 
      15                 :            :     - First, the parameters, b, and kappa are specified via functions that
      16                 :            :     constrain the beta SDE to be consistent with the turbulent mixing process.
      17                 :            :     In particular, the SDE is made consistent with the no-mix and fully mixed
      18                 :            :     limits. See, e.g., MixNumberFractionBetaCoeffConst::update().
      19                 :            : 
      20                 :            :     - Second, there two additional random variables computed, the same as also
      21                 :            :     computed by the number-fraction beta equation, see also
      22                 :            :     DiffEq/NumberFractionBeta.h.
      23                 :            : 
      24                 :            :     In a nutshell, the equation integrated governs a set of scalars,
      25                 :            :     \f$\color[HTML]{dcdcdc}0\!\le\!X_\alpha\f$,
      26                 :            :     \f$\color[HTML]{dcdcdc}\alpha\!=\!1,\dots,N\f$, as
      27                 :            : 
      28                 :            :     @m_class{m-show-m}
      29                 :            : 
      30                 :            :     \f[
      31                 :            :        \mathrm{d}X_\alpha(t) = \frac{b_\alpha}{2}\left(S_\alpha - X_\alpha\right)
      32                 :            :        \mathrm{d}t + \sqrt{\kappa_\alpha X_\alpha(1-X_\alpha)}
      33                 :            :        \mathrm{d}W_\alpha(t), \qquad \alpha=1,\dots,N
      34                 :            :     \f]
      35                 :            : 
      36                 :            :     @m_class{m-hide-m}
      37                 :            : 
      38                 :            :     \f[ \begin{split}
      39                 :            :        \mathrm{d}X_\alpha(t) = \frac{b_\alpha}{2}\left(S_\alpha - X_\alpha\right)
      40                 :            :        \mathrm{d}t + \sqrt{\kappa_\alpha X_\alpha(1-X_\alpha)}
      41                 :            :        \mathrm{d}W_\alpha(t), \\ \alpha=1,\dots,N
      42                 :            :     \end{split} \f]
      43                 :            : 
      44                 :            :     with parameter vectors \f$\color[HTML]{dcdcdc}b_\alpha = \Theta b'_\alpha >
      45                 :            :     0\f$, \f$\color[HTML]{dcdcdc} \newcommand{\irv}[1]{\langle{#1^2}\rangle}
      46                 :            :     \kappa_\alpha = \kappa' \irv{x} > 0\f$, and \f$\color[HTML]{dcdcdc}0 < S_\alpha
      47                 :            :     < 1\f$. This is similar to DiffEq/Beta.h, but the parameters,
      48                 :            :     \f$\color[HTML]{dcdcdc}b\f$ and \f$\color[HTML]{dcdcdc}\kappa\f$ constrained.
      49                 :            :     Here \f$\color[HTML]{dcdcdc} \newcommand{\irv}[1]{\langle{#1^2}\rangle}
      50                 :            :     \newcommand{\irmean}[1]{{\langle{#1}\rangle}} \Theta = 1 - \irv{x} / [
      51                 :            :     \irmean{X} (1-\irmean{X}) ]\f$. The fluctuation about the mean,
      52                 :            :     \f$\color[HTML]{dcdcdc} \newcommand{\irmean}[1]{{\langle{#1}\rangle}}
      53                 :            :     \irmean{X} \f$, is defined as usual: \f$\color[HTML]{dcdcdc}
      54                 :            :     \newcommand{\irmean}[1]{{\langle{#1}\rangle}} x = X - \irmean{X} \f$, and
      55                 :            :     \f$\color[HTML]{dcdcdc}b'\f$ and \f$\color[HTML]{dcdcdc} \kappa'\f$ are
      56                 :            :     user-specified constants. Also, \f$\color[HTML]{dcdcdc}\mathrm{d}W_\alpha(t)\f$
      57                 :            :     is an isotropic vector-valued
      58                 :            :     [Wiener process](http://en.wikipedia.org/wiki/Wiener_process) with
      59                 :            :     independent increments. The invariant distribution is the joint beta
      60                 :            :     distribution. This system of SDEs consists of N independent equations. For
      61                 :            :     more on the beta SDE, see https://doi.org/10.1080/14685248.2010.510843.
      62                 :            : 
      63                 :            :     Similar to the number-fraction beta SDE (DiffEq/NumberFractionBeta.h), in
      64                 :            :     addition to integrating the above SDE, there are two additional functions
      65                 :            :     of \f$\color[HTML]{dcdcdc} X_\alpha \f$ are computed as
      66                 :            :     \f[ \begin{aligned}
      67                 :            :       \rho(X_\alpha) & = \rho_{2\alpha} ( 1 - r'_\alpha X_\alpha ) \\
      68                 :            :       V(X_\alpha) & = \frac{1}{ \rho_{2\alpha} ( 1 - r'_\alpha X_\alpha ) }
      69                 :            :     \end{aligned} \f]
      70                 :            :     These equations compute the instantaneous mixture density,
      71                 :            :      \f$\color[HTML]{dcdcdc} \rho \f$, and instantaneous specific volume,
      72                 :            :      \f$\color[HTML]{dcdcdc} V_\alpha \f$, for equation \f$\color[HTML]{dcdcdc}
      73                 :            :      \alpha \f$ in the system. These quantities are used in binary mixing of
      74                 :            :      variable-density turbulence between two fluids with constant densities,
      75                 :            :      \f$\color[HTML]{dcdcdc} \rho_1, \f$ and \f$\color[HTML]{dcdcdc} \rho_2 \f$. The
      76                 :            :      additional parameters, \f$\color[HTML]{dcdcdc} \rho_2 \f$ and
      77                 :            :      \f$\color[HTML]{dcdcdc} r' \f$ are user input parameters and kept constant
      78                 :            :      during integration. Since we compute the above variables,
      79                 :            :      \f$\color[HTML]{dcdcdc}\rho,\f$ and \f$\color[HTML]{dcdcdc}V\f$, and call them
      80                 :            :      mixture density and specific volume, respectively, \f$\color[HTML]{dcdcdc}X\f$,
      81                 :            :      governed by the beta SDE is a number (or mole) fraction.
      82                 :            : 
      83                 :            :     _All of this is unpublished, but will be linked in here once published_.
      84                 :            : */
      85                 :            : // *****************************************************************************
      86                 :            : #ifndef MixNumberFractionBeta_h
      87                 :            : #define MixNumberFractionBeta_h
      88                 :            : 
      89                 :            : #include <vector>
      90                 :            : #include <cmath>
      91                 :            : 
      92                 :            : #include "InitPolicy.hpp"
      93                 :            : #include "MixNumberFractionBetaCoeffPolicy.hpp"
      94                 :            : #include "RNG.hpp"
      95                 :            : #include "Particles.hpp"
      96                 :            : 
      97                 :            : namespace walker {
      98                 :            : 
      99                 :            : extern ctr::InputDeck g_inputdeck;
     100                 :            : extern std::map< tk::ctr::RawRNGType, tk::RNG > g_rng;
     101                 :            : 
     102                 :            : //! \brief MixNumberFractionBeta SDE used polymorphically with DiffEq
     103                 :            : //! \details The template arguments specify policies and are used to configure
     104                 :            : //!   the behavior of the class. The policies are:
     105                 :            : //!   - Init - initialization policy, see DiffEq/InitPolicy.h
     106                 :            : //!   - Coefficients - coefficients policy, see
     107                 :            : //!     DiffEq/MixNumberFractionBetaCoeffPolicy.h
     108                 :            : template< class Init, class Coefficients >
     109                 :            : class MixNumberFractionBeta {
     110                 :            : 
     111                 :            :   private:
     112                 :            :     using ncomp_t = tk::ctr::ncomp_t;
     113                 :            : 
     114                 :            :   public:
     115                 :            :     //! \brief Constructor
     116                 :            :     //! \param[in] c Index specifying which system of mix number-fraction beta
     117                 :            :     //!   SDEs to construct. There can be multiple mixnumfracbeta ... end blocks
     118                 :            :     //!   in a control file. This index specifies which mix number-fraction beta
     119                 :            :     //!   SDE system to instantiate. The index corresponds to the order in which
     120                 :            :     //!   the mixnumfracbeta ... end blocks are given the control file.
     121                 :          0 :     explicit MixNumberFractionBeta( ncomp_t c ) :
     122                 :            :       m_c( c ),
     123                 :            :       m_depvar(
     124                 :          0 :         g_inputdeck.get< tag::param, tag::mixnumfracbeta, tag::depvar >().at(c)
     125                 :            :       ),
     126                 :            :       m_ncomp(
     127                 :          0 :         g_inputdeck.get< tag::component >().get< tag::mixnumfracbeta >().at(c)/3
     128                 :            :       ),
     129                 :            :       m_offset(
     130                 :          0 :         g_inputdeck.get< tag::component >().offset< tag::mixnumfracbeta >(c) ),
     131         [ -  - ]:          0 :       m_rng( g_rng.at( tk::ctr::raw(
     132                 :          0 :         g_inputdeck.get< tag::param, tag::mixnumfracbeta, tag::rng >().at(c) ) )
     133                 :            :       ),
     134                 :            :       m_bprime(),
     135                 :            :       m_S(),
     136                 :            :       m_kprime(),
     137                 :            :       m_rho2(),
     138                 :            :       m_rcomma(),
     139                 :            :       m_b(),
     140                 :            :       m_k(),
     141                 :            :       coeff(
     142                 :          0 :         m_ncomp,
     143         [ -  - ]:          0 :         g_inputdeck.get< tag::param, tag::mixnumfracbeta, tag::bprime >().at(c),
     144         [ -  - ]:          0 :         g_inputdeck.get< tag::param, tag::mixnumfracbeta, tag::S >().at(c),
     145         [ -  - ]:          0 :         g_inputdeck.get< tag::param, tag::mixnumfracbeta, tag::kappaprime >().at(c),
     146         [ -  - ]:          0 :         g_inputdeck.get< tag::param, tag::mixnumfracbeta, tag::rho2 >().at(c),
     147         [ -  - ]:          0 :         g_inputdeck.get< tag::param, tag::mixnumfracbeta, tag::rcomma >().at(c),
     148         [ -  - ]:          0 :         m_bprime, m_S, m_kprime, m_rho2, m_rcomma, m_b, m_k ) {}
     149                 :            : 
     150                 :            :     //! Initalize SDE, prepare for time integration
     151                 :            :     //! \param[in] stream Thread (or more precisely stream) ID 
     152                 :            :     //! \param[in,out] particles Array of particle properties 
     153                 :          0 :     void initialize( int stream, tk::Particles& particles ) {
     154                 :            :       //! Set initial conditions using initialization policy
     155                 :            :       Init::template
     156                 :            :         init< tag::mixnumfracbeta >
     157                 :          0 :             ( g_inputdeck, m_rng, stream, particles, m_c, m_ncomp, m_offset );
     158                 :          0 :     }
     159                 :            : 
     160                 :            :     //! \brief Advance particles according to the system of mix number-fraction
     161                 :            :     //!   beta SDEs
     162                 :            :     //! \param[in,out] particles Array of particle properties
     163                 :            :     //! \param[in] stream Thread (or more precisely stream) ID
     164                 :            :     //! \param[in] dt Time step size
     165                 :            :     //! \param[in] moments Map of statistical moments
     166                 :          0 :     void advance( tk::Particles& particles,
     167                 :            :                   int stream,
     168                 :            :                   tk::real dt,
     169                 :            :                   tk::real,
     170                 :            :                   const std::map< tk::ctr::Product, tk::real >& moments )
     171                 :            :     {
     172                 :            :       // Update SDE coefficients
     173                 :          0 :       coeff.update( m_depvar, m_ncomp, moments, m_bprime, m_kprime, m_b, m_k );
     174                 :            :       // Advance particles
     175                 :          0 :       const auto npar = particles.nunk();
     176         [ -  - ]:          0 :       for (auto p=decltype(npar){0}; p<npar; ++p) {
     177                 :            :         // Generate Gaussian random numbers with zero mean and unit variance
     178         [ -  - ]:          0 :         std::vector< tk::real > dW( m_ncomp );
     179         [ -  - ]:          0 :         m_rng.gaussian( stream, m_ncomp, dW.data() );
     180                 :            :         // Advance all m_ncomp scalars
     181         [ -  - ]:          0 :         for (ncomp_t i=0; i<m_ncomp; ++i) {
     182         [ -  - ]:          0 :           tk::real& X = particles( p, i, m_offset );
     183                 :          0 :           tk::real d = m_k[i] * X * (1.0 - X) * dt;
     184         [ -  - ]:          0 :           d = (d > 0.0 ? std::sqrt(d) : 0.0);
     185                 :          0 :           X += 0.5*m_b[i]*(m_S[i] - X)*dt + d*dW[i];
     186                 :            :           // Compute instantaneous values derived from updated X
     187         [ -  - ]:          0 :           particles( p, m_ncomp+i, m_offset ) = rho( X, i );
     188         [ -  - ]:          0 :           particles( p, m_ncomp*2+i, m_offset ) = vol( X, i );
     189                 :            :         }
     190                 :            :       }
     191                 :          0 :     }
     192                 :            : 
     193                 :            :   private:
     194                 :            :     const ncomp_t m_c;                  //!< Equation system index
     195                 :            :     const char m_depvar;                //!< Dependent variable
     196                 :            :     const ncomp_t m_ncomp;              //!< Number of components
     197                 :            :     const ncomp_t m_offset;             //!< Offset SDE operates from
     198                 :            :     const tk::RNG& m_rng;               //!< Random number generator
     199                 :            : 
     200                 :            :     //! Coefficients
     201                 :            :     std::vector< kw::sde_bprime::info::expect::type > m_bprime;
     202                 :            :     std::vector< kw::sde_S::info::expect::type > m_S;
     203                 :            :     std::vector< kw::sde_kappaprime::info::expect::type > m_kprime;
     204                 :            :     std::vector< kw::sde_rho2::info::expect::type > m_rho2;
     205                 :            :     std::vector< kw::sde_rcomma::info::expect::type > m_rcomma;
     206                 :            :     std::vector< kw::sde_b::info::expect::type > m_b;
     207                 :            :     std::vector< kw::sde_kappa::info::expect::type > m_k;
     208                 :            : 
     209                 :            :     //! Coefficients policy
     210                 :            :     Coefficients coeff;
     211                 :            : 
     212                 :            :     //! \brief Return density for mole fraction
     213                 :            :     //! \details Functional wrapper around the dependent variable of the beta
     214                 :            :     //!   SDE. This function returns the instantaneous density, rho,
     215                 :            :     //!   based on the number fraction, X, and parameters rho2 and r'.
     216                 :            :     //! \param[in] X Instantaneous value of the mole fraction, X
     217                 :            :     //! \param[in] i Index specifying which (of multiple) parameters to use
     218                 :            :     //! \return Instantaneous value of the density, rho
     219                 :          0 :     tk::real rho( tk::real X, ncomp_t i ) const {
     220                 :          0 :       return m_rho2[i] * ( 1.0 - m_rcomma[i] * X );
     221                 :            :     }
     222                 :            : 
     223                 :            :     //! \brief Return specific volume for mole fraction
     224                 :            :     //! \details Functional wrapper around the dependent variable of the beta
     225                 :            :     //!   SDE. This function returns the instantaneous specific volume, V,
     226                 :            :     //!   based on the number fraction, X, and parameters rho2 and r'.
     227                 :            :     //! \param[in] X Instantaneous value of the mole fraction, X
     228                 :            :     //! \param[in] i Index specifying which (of multiple) parameters to use
     229                 :            :     //! \return Instantaneous value of the specific volume, V
     230                 :          0 :     tk::real vol( tk::real X, ncomp_t i ) const {
     231                 :          0 :       return 1.0 / rho( X, i );
     232                 :            :     }
     233                 :            : };
     234                 :            : 
     235                 :            : } // walker::
     236                 :            : 
     237                 :            : #endif // MixNumberFractionBeta_h

Generated by: LCOV version 1.14