Walker test code coverage report
Current view: top level - DiffEq/Beta - MixMassFractionBeta.hpp (source / functions) Hit Total Coverage
Commit: test_coverage.info Lines: 76 82 92.7 %
Date: 2022-09-21 18:57:21 Functions: 14 280 5.0 %
Legend: Lines: hit not hit | Branches: + taken - not taken # not executed Branches: 47 108 43.5 %

           Branch data     Line data    Source code
       1                 :            : // *****************************************************************************
       2                 :            : /*!
       3                 :            :   \file      src/DiffEq/Beta/MixMassFractionBeta.hpp
       4                 :            :   \copyright 2012-2015 J. Bakosi,
       5                 :            :              2016-2018 Los Alamos National Security, LLC.,
       6                 :            :              2019-2021 Triad National Security, LLC.
       7                 :            :              All rights reserved. See the LICENSE file for details.
       8                 :            :   \brief     System of mix mass-fraction beta SDEs
       9                 :            :   \details   This file implements the time integration of a system of stochastic
      10                 :            :     differential equations (SDEs) with linear drift and quadratic diagonal
      11                 :            :     diffusion, whose invariant is the joint [beta
      12                 :            :     distribution](http://en.wikipedia.org/wiki/Beta_distribution). There are two
      13                 :            :     differences compared to the plain beta SDE (see DiffEq/Beta.h):
      14                 :            : 
      15                 :            :     - First, the parameters, b, and kappa are specified via functions that
      16                 :            :     constrain the beta SDE to be consistent with the turbulent mixing process.
      17                 :            :     In particular, the SDE is made consistent with the no-mix and fully mixed
      18                 :            :     limits. See, e.g., MixMassFractionBetaCoeffConst::update().
      19                 :            : 
      20                 :            :     - Second, there two additional random variables computed, the same as also
      21                 :            :     computed by the mass-fraction beta equation, see also
      22                 :            :     DiffEq/MassFractionBeta.h.
      23                 :            : 
      24                 :            :     In a nutshell, the equation integrated governs a set of scalars,
      25                 :            :     \f$\color[HTML]{dcdcdc}0\!\le\!Y_\alpha\f$,
      26                 :            :     \f$\color[HTML]{dcdcdc}\alpha\!=\!1,\dots,N\f$, as
      27                 :            : 
      28                 :            :     @m_class{m-show-m}
      29                 :            : 
      30                 :            :     \f[
      31                 :            :        \mathrm{d}Y_\alpha(t) = \frac{b_\alpha}{2}\left(S_\alpha - Y_\alpha\right)
      32                 :            :        \mathrm{d}t + \sqrt{\kappa_\alpha Y_\alpha(1-Y_\alpha)}
      33                 :            :        \mathrm{d}W_\alpha(t), \qquad \alpha=1,\dots,N
      34                 :            :     \f]
      35                 :            : 
      36                 :            :     @m_class{m-hide-m}
      37                 :            : 
      38                 :            :     \f[ \begin{split}
      39                 :            :        \mathrm{d}Y_\alpha(t) = \frac{b_\alpha}{2}\left(S_\alpha - Y_\alpha\right)
      40                 :            :        \mathrm{d}t + \sqrt{\kappa_\alpha Y_\alpha(1-Y_\alpha)}
      41                 :            :        \mathrm{d}W_\alpha(t), \\ \alpha=1,\dots,N
      42                 :            :     \end{split} \f]
      43                 :            : 
      44                 :            :     with parameter vectors \f$\color[HTML]{dcdcdc}b_\alpha = \Theta b'_\alpha >
      45                 :            :     0\f$, \f$\color[HTML]{dcdcdc} \newcommand{\irv}[1]{\langle{#1^2}\rangle}
      46                 :            :     \kappa_\alpha = \kappa' \irv{x} > 0\f$, and \f$\color[HTML]{dcdcdc}0 < S_\alpha
      47                 :            :     < 1\f$. This is similar to DiffEq/Beta.h, but the parameters,
      48                 :            :     \f$\color[HTML]{dcdcdc}b\f$ and \f$\color[HTML]{dcdcdc}\kappa\f$ constrained.
      49                 :            :     Here \f$\color[HTML]{dcdcdc} \newcommand{\irv}[1]{\langle{#1^2}\rangle}
      50                 :            :     \newcommand{\irmean}[1]{{\langle{#1}\rangle}} \Theta = 1 - \irv{x} / [
      51                 :            :     \irmean{Y} (1-\irmean{Y}) ]\f$. The fluctuation about the mean,
      52                 :            :     \f$\color[HTML]{dcdcdc} \newcommand{\irmean}[1]{{\langle{#1}\rangle}}
      53                 :            :     \irmean{Y} \f$, is defined as usual: \f$\color[HTML]{dcdcdc}
      54                 :            :     \newcommand{\irmean}[1]{{\langle{#1}\rangle}} x = Y - \irmean{Y} \f$, and
      55                 :            :     \f$\color[HTML]{dcdcdc}b'\f$ and \f$\color[HTML]{dcdcdc} \kappa'\f$ are
      56                 :            :     user-specified constants. Also,
      57                 :            :     \f$\color[HTML]{dcdcdc}\mathrm{d}W_\alpha(t)\f$ is an isotropic vector-valued
      58                 :            :     [Wiener process](http://en.wikipedia.org/wiki/Wiener_process) with
      59                 :            :     independent increments. The invariant distribution is the joint beta
      60                 :            :     distribution. This system of SDEs consists of N independent equations. For
      61                 :            :     more on the beta SDE, see https://doi.org/10.1080/14685248.2010.510843.
      62                 :            : 
      63                 :            :     In addition to integrating the above SDE, there are two additional functions
      64                 :            :     of \f$\color[HTML]{dcdcdc} Y_\alpha \f$ are computed as
      65                 :            :     \f[ \begin{aligned}
      66                 :            :       \rho(Y_\alpha) & = \frac{ \rho_{2\alpha} }{ 1 + r_\alpha Y_\alpha } \\
      67                 :            :       V(Y_\alpha) & = \frac{1}{ \rho(Y_\alpha) }
      68                 :            :     \end{aligned} \f]
      69                 :            :     These equations compute the instantaneous mixture density,
      70                 :            :     \f$\color[HTML]{dcdcdc} \rho \f$, and instantaneous specific volume,
      71                 :            :     \f$\color[HTML]{dcdcdc} V_\alpha \f$, for equation \f$\color[HTML]{dcdcdc}
      72                 :            :     \alpha \f$ in the system. These quantities are used in binary mixing of
      73                 :            :     variable-density turbulence between two fluids with constant densities,
      74                 :            :     \f$\color[HTML]{dcdcdc} \rho_1, \f$ and \f$\color[HTML]{dcdcdc} \rho_2 \f$. The
      75                 :            :     additional parameters, \f$\color[HTML]{dcdcdc} \rho_2 \f$ and
      76                 :            :     \f$\color[HTML]{dcdcdc} r \f$ are user input parameters and kept constant
      77                 :            :     during integration. Since we compute the above variables,
      78                 :            :     \f$\color[HTML]{dcdcdc}\rho,\f$ and \f$\color[HTML]{dcdcdc}V\f$, and call them
      79                 :            :     mixture density and specific volume, respectively, \f$\color[HTML]{dcdcdc}Y\f$,
      80                 :            :     governed by the beta SDE is a mass fraction.
      81                 :            : 
      82                 :            :     _All of this is unpublished, but will be linked in here once published_.
      83                 :            : */
      84                 :            : // *****************************************************************************
      85                 :            : #ifndef MixMassFractionBeta_h
      86                 :            : #define MixMassFractionBeta_h
      87                 :            : 
      88                 :            : #include <vector>
      89                 :            : #include <tuple>
      90                 :            : 
      91                 :            : #include "InitPolicy.hpp"
      92                 :            : #include "MixMassFractionBetaCoeffPolicy.hpp"
      93                 :            : #include "RNG.hpp"
      94                 :            : #include "Particles.hpp"
      95                 :            : #include "Table.hpp"
      96                 :            : #include "CoupledEq.hpp"
      97                 :            : #include "HydroTimeScales.hpp"
      98                 :            : #include "HydroProductions.hpp"
      99                 :            : #include "Walker/Options/HydroTimeScales.hpp"
     100                 :            : #include "Walker/Options/HydroProductions.hpp"
     101                 :            : 
     102                 :            : namespace walker {
     103                 :            : 
     104                 :            : extern ctr::InputDeck g_inputdeck;
     105                 :            : extern std::map< tk::ctr::RawRNGType, tk::RNG > g_rng;
     106                 :            : 
     107                 :            : //! \brief MixMassFractionBeta SDE used polymorphically with DiffEq
     108                 :            : //! \details The template arguments specify policies and are used to configure
     109                 :            : //!   the behavior of the class. The policies are:
     110                 :            : //!   - Init - initialization policy, see DiffEq/InitPolicy.h
     111                 :            : //!   - Coefficients - coefficients policy, see
     112                 :            : //!     DiffEq/MixMassFractionBetaCoeffPolicy.h
     113                 :            : template< class Init, class Coefficients >
     114                 :            : class MixMassFractionBeta {
     115                 :            : 
     116                 :            :   private:
     117                 :            :     using ncomp_t = tk::ctr::ncomp_t;
     118                 :            :     using eq = tag::mixmassfracbeta;
     119                 :            : 
     120                 :            :   public:
     121                 :            :     //! Number of derived variables computed by the SDE
     122                 :            :     //! \details Derived variables: density, specific volume, 1 - mass fraction
     123                 :            :     //! \warning If you change this, you must also change the constant in
     124                 :            :     //!   Velocity::m_mixmassfracbeta_ncomp in DiffEq/Velocity/Velocity.hpp.
     125                 :            :     //!   To see where, search for NUMDERIVED there.
     126                 :            :     static const std::size_t NUMDERIVED = 3;
     127                 :            : 
     128                 :            :     //! \brief Constructor
     129                 :            :     //! \param[in] c Index specifying which system of mix mass-fraction beta
     130                 :            :     //!   SDEs to construct. There can be multiple mixmassfracbeta ... end blocks
     131                 :            :     //!   in a control file. This index specifies which mix mass-fraction beta
     132                 :            :     //!   SDE system to instantiate. The index corresponds to the order in which
     133                 :            :     //!   the mixmassfracbeta ... end blocks are given the control file.
     134                 :         15 :     explicit MixMassFractionBeta( ncomp_t c ) :
     135                 :            :       m_c( c ),
     136                 :         15 :       m_depvar( g_inputdeck.get< tag::param, eq, tag::depvar >().at(c) ),
     137                 :            :       // divide by the number of derived variables computed, see derived()
     138                 :         15 :       m_ncomp( g_inputdeck.get< tag::component >().get< eq >().at(c) /
     139                 :            :                (NUMDERIVED + 1) ),
     140                 :         15 :       m_offset( g_inputdeck.get< tag::component >().offset< eq >(c) ),
     141         [ +  - ]:         15 :       m_rng( g_rng.at( tk::ctr::raw(
     142                 :         15 :         g_inputdeck.get< tag::param, eq, tag::rng >().at(c) ) ) ),
     143                 :         15 :       m_solve( g_inputdeck.get< tag::param, eq, tag::solve >().at(c) ),
     144                 :         15 :       m_velocity_coupled( coupled< eq, tag::velocity >( c ) ),
     145                 :         15 :       m_velocity_depvar( depvar< eq, tag::velocity >( c ) ),
     146                 :         30 :       m_velocity_offset( offset< eq, tag::velocity, tag::velocity_id >( c ) ),
     147                 :            :       m_velocity_solve(
     148                 :         15 :         m_velocity_coupled ?
     149                 :          0 :           g_inputdeck.get< tag::param, tag::velocity, tag::solve >().at(
     150                 :            :             system_id< eq, tag::velocity, tag::velocity_id >( c ) ) :
     151                 :            :         ctr::DepvarType::FULLVAR ),
     152                 :         15 :       m_dissipation_coupled( coupled< eq, tag::dissipation >( c ) ),
     153                 :         15 :       m_dissipation_depvar( depvar< eq, tag::dissipation >( c ) ),
     154                 :            :       m_dissipation_offset(
     155                 :         30 :         offset< eq, tag::dissipation, tag::dissipation_id >( c ) ),
     156                 :         15 :       m_dY( initScalarGradient() ),
     157                 :            :       m_bprime(),
     158                 :            :       m_S(),
     159                 :            :       m_kprime(),
     160                 :            :       m_rho2(),
     161                 :            :       m_r(),
     162                 :            :       m_b(),
     163                 :            :       m_k(),
     164                 :            :       coeff(
     165                 :         15 :         m_ncomp,
     166         [ +  - ]:         15 :         g_inputdeck.get< tag::param, eq, tag::bprime >().at(c),
     167         [ +  - ]:         15 :         g_inputdeck.get< tag::param, eq, tag::S >().at(c),
     168         [ +  - ]:         15 :         g_inputdeck.get< tag::param, eq, tag::kappaprime >().at(c),
     169         [ +  - ]:         15 :         g_inputdeck.get< tag::param, eq, tag::rho2 >().at(c),
     170         [ +  - ]:         15 :         g_inputdeck.get< tag::param, eq, tag::r >().at(c),
     171 [ -  + ][ +  - ]:        120 :         m_bprime, m_S, m_kprime, m_rho2, m_r, m_b, m_k )
     172                 :            :     {
     173                 :            :       // Zero prescribed scalar gradient if full variable is solved for
     174 [ +  - ][ +  - ]:         15 :       if (m_solve == ctr::DepvarType::FULLVAR) m_dY.fill( 0.0 );
     175                 :            :       // Populate inverse hydrodynamics time scales and hydrodyanmics
     176                 :            :       // production/dissipation extracted from DNS
     177         [ +  + ]:         15 :       if ( Coefficients::type() == ctr::CoeffPolicyType::HYDROTIMESCALE ) {
     178                 :            :         // Configure inverse hydrodyanmics time scale from DNS
     179                 :            :         const auto& hts =
     180         [ +  - ]:          4 :           g_inputdeck.get< tag::param, eq, tag::hydrotimescales >().at(c);
     181         [ +  - ]:          8 :         ctr::HydroTimeScales ot;
     182                 :            :         // cppcheck-suppress useStlAlgorithm
     183 [ +  + ][ +  - ]:         24 :         for (auto t : hts) m_hts.push_back( ot.table(t) );
                 [ +  - ]
     184 [ -  + ][ -  - ]:          4 :         Assert( m_hts.size() == m_ncomp, "Number of inverse hydro time scale "
         [ -  - ][ -  - ]
     185                 :            :           "tables associated does not match the components integrated" );
     186                 :            : 
     187                 :            :         // Configure hydrodyanmics production/dissipation from DNS
     188                 :            :         const auto& hp =
     189         [ +  - ]:          4 :           g_inputdeck.get< tag::param, eq, tag::hydroproductions >().at(c);
     190         [ +  - ]:          8 :         ctr::HydroProductions op;
     191                 :            :         // cppcheck-suppress useStlAlgorithm
     192 [ +  + ][ +  - ]:         24 :         for (auto t : hp) m_hp.push_back( op.table(t) );
                 [ +  - ]
     193 [ -  + ][ -  - ]:          4 :         Assert( m_hp.size() == m_ncomp, "Number of hydro "
         [ -  - ][ -  - ]
     194                 :            :           "production/dissipation tables associated does not match the "
     195                 :            :           "components integrated" );
     196                 :            :       }
     197                 :         15 :     }
     198                 :            : 
     199                 :            :     //! Initalize SDE, prepare for time integration
     200                 :            :     //! \param[in] stream Thread (or more precisely stream) ID 
     201                 :            :     //! \param[in,out] particles Array of particle properties 
     202                 :         51 :     void initialize( int stream, tk::Particles& particles ) {
     203                 :            :       //! Set initial conditions using initialization policy
     204                 :            :       Init::template init< eq >
     205                 :         51 :         ( g_inputdeck, m_rng, stream, particles, m_c, m_ncomp, m_offset );
     206                 :            :       // Initialize values derived from primary prognostic variable
     207                 :         51 :       const auto npar = particles.nunk();
     208         [ +  + ]:     304051 :       for (auto p=decltype(npar){0}; p<npar; ++p)
     209         [ +  + ]:    1824000 :         for (ncomp_t i=0; i<m_ncomp; ++i) {
     210 [ -  + ][ -  - ]:    1520000 :           Assert( particles( p, i, m_offset ) > 0.0, "Beta IC out of bounds!" );
         [ -  - ][ -  - ]
     211 [ -  + ][ -  - ]:    1520000 :           Assert( particles( p, i, m_offset ) < 1.0, "Beta IC out of bounds!" );
         [ -  - ][ -  - ]
     212                 :    1520000 :           derived( particles, p, i );
     213                 :            :         }
     214                 :         51 :     }
     215                 :            : 
     216                 :            :     //! \brief Advance particles according to the system of mix mass-fraction
     217                 :            :     //!   beta SDEs
     218                 :            :     //! \param[in,out] particles Array of particle properties
     219                 :            :     //! \param[in] stream Thread (or more precisely stream) ID
     220                 :            :     //! \param[in] dt Time step size
     221                 :            :     //! \param[in] t Physical time of the simulation
     222                 :            :     //! \param[in] moments Map of statistical moments
     223                 :      23536 :     void advance( tk::Particles& particles,
     224                 :            :                   int stream,
     225                 :            :                   tk::real dt,
     226                 :            :                   tk::real t,
     227                 :            :                   const std::map< tk::ctr::Product, tk::real >& moments )
     228                 :            :     {
     229                 :            :       // Update SDE coefficients
     230                 :      23536 :       coeff.update( m_depvar, m_dissipation_depvar, m_velocity_depvar,
     231                 :      23536 :                     m_velocity_solve, m_solve, m_ncomp, moments, m_bprime,
     232                 :      23536 :                     m_kprime, m_rho2, m_r, m_hts, m_hp, m_b, m_k, m_S, t );
     233                 :            : 
     234                 :      23536 :       const auto eps = std::numeric_limits< tk::real >::epsilon();
     235                 :            : 
     236                 :            :       // Advance particles
     237                 :      23536 :       const auto npar = particles.nunk();
     238         [ +  + ]:    4723536 :       for (auto p=decltype(npar){0}; p<npar; ++p) {
     239                 :            :         // Generate Gaussian random numbers with zero mean and unit variance
     240         [ +  - ]:    9400000 :         std::vector< tk::real > dW( m_ncomp );
     241         [ +  - ]:    4700000 :         m_rng.gaussian( stream, m_ncomp, dW.data() );
     242                 :            : 
     243                 :            :         // Access coupled particle velocity
     244                 :    4700000 :         tk::real u = 0.0, v = 0.0, w = 0.0;
     245                 :            :         using std::abs;
     246 [ +  - ][ +  - ]:    4700000 :         if (abs(m_dY[0]) > eps || abs(m_dY[1]) > eps || abs(m_dY[2]) > eps) {
         [ -  + ][ -  + ]
     247         [ -  - ]:          0 :           u = particles( p, 0, m_velocity_offset );
     248         [ -  - ]:          0 :           v = particles( p, 1, m_velocity_offset );
     249         [ -  - ]:          0 :           w = particles( p, 2, m_velocity_offset );
     250                 :            :         }
     251                 :            : 
     252                 :            :         // Advance all m_ncomp scalars
     253         [ +  + ]:   28200000 :         for (ncomp_t i=0; i<m_ncomp; ++i) {
     254         [ +  - ]:   23500000 :           tk::real& Y = particles( p, i, m_offset );
     255                 :   23500000 :           tk::real d = m_k[i] * Y * (1.0 - Y) * dt;
     256         [ +  + ]:   23500000 :           d = (d > 0.0 ? std::sqrt(d) : 0.0);
     257                 :   23500000 :           Y += 0.5*m_b[i]*(m_S[i] - Y)*dt + d*dW[i]
     258                 :   23500000 :              - (m_dY[0]*u - m_dY[1]*v - m_dY[2]*w)*dt;
     259                 :            :           // Compute instantaneous values derived from updated Y
     260         [ +  - ]:   23500000 :           derived( particles, p, i );
     261                 :            :         }
     262                 :            :       }
     263                 :      23536 :     }
     264                 :            : 
     265                 :            :   private:
     266                 :            :     const ncomp_t m_c;                  //!< Equation system index
     267                 :            :     const char m_depvar;                //!< Dependent variable
     268                 :            :     const ncomp_t m_ncomp;              //!< Number of components
     269                 :            :     const ncomp_t m_offset;             //!< Offset SDE operates from
     270                 :            :     const tk::RNG& m_rng;               //!< Random number generator
     271                 :            :     const ctr::DepvarType m_solve;      //!< Depndent variable to solve for
     272                 :            : 
     273                 :            :     const bool m_velocity_coupled;      //!< True if coupled to velocity
     274                 :            :     const char m_velocity_depvar;       //!< Coupled velocity dependent variable
     275                 :            :     const ncomp_t m_velocity_offset;    //!< Offset of coupled velocity eq
     276                 :            :     //! Quantity the coupled velocity eq solves for
     277                 :            :     const ctr::DepvarType m_velocity_solve;
     278                 :            : 
     279                 :            :     const bool m_dissipation_coupled;   //!< True if coupled to dissipation
     280                 :            :     const char m_dissipation_depvar;    //!< Depvar of coupled dissipation eq
     281                 :            :     const ncomp_t m_dissipation_offset; //!< Offset of coupled dissipation eq
     282                 :            : 
     283                 :            :     std::array< tk::real, 3 > m_dY;     //! Prescribed mean scalar gradient
     284                 :            : 
     285                 :            :     //! Coefficients
     286                 :            :     std::vector< kw::sde_bprime::info::expect::type > m_bprime;
     287                 :            :     std::vector< kw::sde_S::info::expect::type > m_S;
     288                 :            :     std::vector< kw::sde_kappaprime::info::expect::type > m_kprime;
     289                 :            :     std::vector< kw::sde_rho2::info::expect::type > m_rho2;
     290                 :            :     std::vector< kw::sde_r::info::expect::type > m_r;
     291                 :            :     std::vector< kw::sde_b::info::expect::type > m_b;
     292                 :            :     std::vector< kw::sde_kappa::info::expect::type > m_k;
     293                 :            : 
     294                 :            :     //! Coefficients policy
     295                 :            :     Coefficients coeff;
     296                 :            : 
     297                 :            :     //! Selected inverse hydrodynamics time scales (if used) for each component
     298                 :            :     //! \details This is only used if the coefficients policy is
     299                 :            :     //!   MixMassFracBetaCoeffHydroTimeScale. See constructor.
     300                 :            :     std::vector< tk::Table<1> > m_hts;
     301                 :            : 
     302                 :            :     //! Selected hydrodynamics production/dissipation (if used) for each comp.
     303                 :            :     //! \details This is only used if the coefficients policy is
     304                 :            :     //!   MixMassFracBetaCoeffHydroTimeScale. See constructor.
     305                 :            :     std::vector< tk::Table<1> > m_hp;
     306                 :            : 
     307                 :            :     //! \brief Return density for mass fraction
     308                 :            :     //! \details Functional wrapper around the dependent variable of the beta
     309                 :            :     //!   SDE. This function returns the instantaneous density, rho,
     310                 :            :     //!   based on the mass fraction, Y, and parameters rho2 and r'.
     311                 :            :     //! \param[in] Y Instantaneous value of the mass fraction, Y
     312                 :            :     //! \param[in] i Index specifying which (of multiple) parameters to use
     313                 :            :     //! \return Instantaneous value of the density, rho
     314                 :   25020000 :     tk::real rho( tk::real Y, ncomp_t i ) const {
     315                 :   25020000 :       return m_rho2[i] / ( 1.0 + m_r[i] * Y );
     316                 :            :     }
     317                 :            : 
     318                 :            :     //! \brief Return specific volume for mass fraction
     319                 :            :     //! \details Functional wrapper around the dependent variable of the beta
     320                 :            :     //!   SDE. This function returns the instantaneous specific volume, V,
     321                 :            :     //!   based on the mass fraction, Y, and parameters rho2 and r'.
     322                 :            :     //! \param[in] Y Instantaneous value of the mass fraction, Y
     323                 :            :     //! \param[in] i Index specifying which (of multiple) parameters to use
     324                 :            :     //! \return Instantaneous value of the specific volume, V
     325                 :   25020000 :     tk::real vol( tk::real Y, ncomp_t i ) const {
     326                 :   25020000 :       return ( 1.0 + m_r[i] * Y ) / m_rho2[i];
     327                 :            :     }
     328                 :            : 
     329                 :            :     //! Compute instantaneous values derived from updated Y
     330                 :            :     //! \param[in,out] particles Particle properties array
     331                 :            :     //! \param[in] p Particle index
     332                 :            :     //! \param[in] i Component index
     333                 :   25020000 :     void derived( tk::Particles& particles, ncomp_t p, ncomp_t i ) const {
     334                 :   25020000 :       tk::real& Y = particles( p, i, m_offset );
     335                 :   25020000 :       particles( p, m_ncomp+i, m_offset ) = rho( Y, i );
     336                 :   25020000 :       particles( p, m_ncomp*2+i, m_offset ) = vol( Y, i );
     337                 :   25020000 :       particles( p, m_ncomp*3+i, m_offset ) = 1.0 - Y;
     338                 :   25020000 :     }
     339                 :            : 
     340                 :            :     //! Initialize imposed mean scalar gradient from user input
     341                 :         15 :     std::array< tk::real, 3 > initScalarGradient() {
     342                 :         15 :       const auto& mg = g_inputdeck.get< tag::param, eq, tag::mean_gradient >();
     343                 :         15 :       std::array< tk::real, 3 > dY{{ 0.0, 0.0, 0.0 }};
     344         [ -  + ]:         15 :       if (mg.size() > m_c) {
     345                 :          0 :         const auto& g = mg[ m_c ];
     346                 :          0 :         dY = {{ g[0], g[1], g[2] }};
     347                 :            :       }
     348                 :            :       Assert( dY.size() == 3, "Mean scalar gradient vector size must be 3" );
     349                 :         15 :       return dY;
     350                 :            :     }
     351                 :            : };
     352                 :            : 
     353                 :            : } // walker::
     354                 :            : 
     355                 :            : #endif // MixMassFractionBeta_h

Generated by: LCOV version 1.14